
V_5

For voltage regulators, we typically define a load R_L in terms of its current i_L , where:

$$\dot{I}_L = \frac{V_O}{R_L}$$

Note that since the load (i.e., regulator) voltage v_0 is a constant (approximately), specifying i_L is **equivalent** to specifying R_L , and vice versa!

Now, since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_Z , we find that the load voltage v_O will also have a **very small** dependence on load resistance R_L (or equivalently, **load current** i_L).

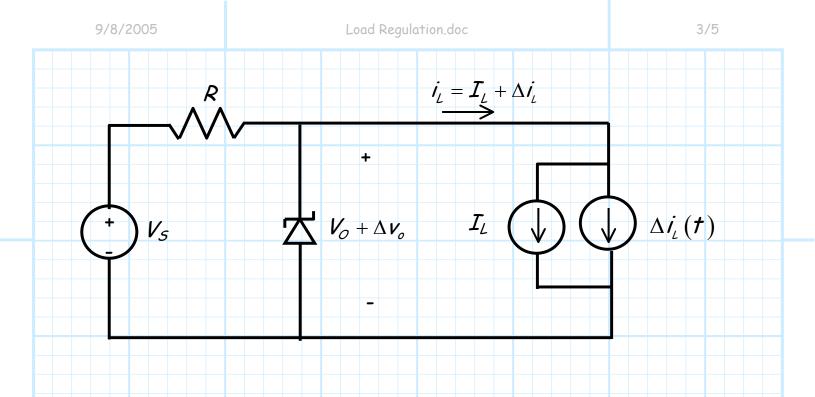
In fact, if the load current i_{L} increases (decreases), the load voltage v_{O} will actually **decrease** (increase) by some small amount.

Q: Why would the load current *i*_L ever change?

A: You must realize that the load resistor R_L simply **models** a more **useful** device. The "load" may in fact be an amplifier, or a component of a cell phone, or a circuit board in a digital computer.

These are all **dynamic** devices, such that they may require **more** current at some times than at others (e.g., the computational load increases, or the cell phone begins to transmit).

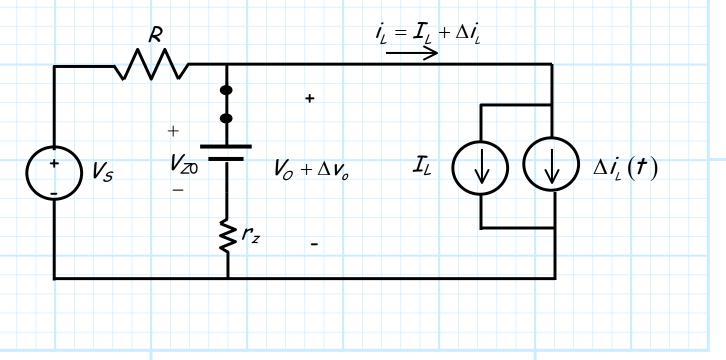
As a result, it is more appropriate to represent the **total** load current as a time-varying signal $(i_{L}(t))$, consisting of both a **DC** component (I_{L}) and a **small-signal** component $(\Delta i_{L}(t))$:


$$i_{L}(t) = I_{L} + \Delta i_{L}(t)$$

This small-signal load current of course leads to a load voltage that is **likewise** time-varying, with both a DC (V_O) and small-signal (ΔV_o) component:

$$\mathbf{V}_{O}(\mathbf{t}) = \mathbf{V}_{O} + \Delta \mathbf{V}_{o}(\mathbf{t})$$

So, we know that the DC load current I_L produces the DC load voltage V_O , whereas the small-signal load current $\Delta i_L(t)$ results in the small-signal load voltage ΔV_O .


We can **replace** the load resistor with **current sources** to represent this load current:

Q: Just how are Δi_{L} and Δv_{o} related? I mean, if Δi_{L} equals, say, **50 mA**, what will value of Δv_{o} be?

A: Determining this answer is easy! We simply need to perform a small-signal analysis.

In other words, we first replace the Zener diode with its **Zener PWL model**.

* Note load regulation is expressed in units of resistance (e.g., Ω).

* Note also that load regulation is a **negative** value. This means that **increasing** i_{L} leads to a **decreasing** v_{O} (and vice versa).

* Load regulation allows us to determine the **amount** that the load voltage changes (Δv_o) when the load current changes (Δi_L) .

* For example, if load regulation is -0.0005 K Ω , we find that the load voltage will **decrease** 25 mV when the load current **increases** 50mA

 $(i.e., \Delta v_{o} = -0.0005 \Delta i_{L} = -0.0005 (50) = -0.025 V).$

* **Ideally**, load regulation is **zero**. Since dynamic resistance r_Z is typically very small (i.e., $r_Z \ll R$), we find that the load regulation of most shunt regulators is likewise **small** (this is a **good** thing!).